Beam sizes for a 0.5 GeV/c experiment off the Booster, and 2 GeV/c experiment in the AGS tunnel. The 95% normalized emittance is 15π mm-mrad. The beam size is:

$$x = \sqrt{\beta_x \left(\frac{\varepsilon_x}{\pi \beta \gamma}\right)}$$

The 95% beam size is given in Table 4. β_x is taken from Yuri's JPARC lattice and Thomas Roser's talk at the July, 2003 EDM Collaboration Meeting.

Table 4. Beam parameters for 0.5 GeV/c experiment off the Booster, and 2 GeV/c experiment in the AGS tunnel.

	p = 0.5 GeV/c	p = 2 GeV/c	
β_{x}	6.9m	20m	
$\overline{\gamma}$	1.035	1.46	
β	0.25	0.73	
X	20mm	17mm	

Simulation of Thin Carbon Target in an AGS-sized Ring

<u>Carbon target is probably not the optimum target</u>. We worked through the statistical sensitivity with a thin Carbon target. <u>The optimized statistical sensitivity</u> will be better.

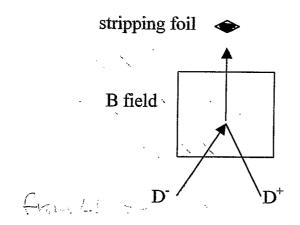
AGS parameters (since we haven't designed an AGS sized ring lattice).

Normalized transverse emittance (95%)	15π mm-mrad
β_x , β_y	≈20m
Longitudinal emittance per nucleon (total)	0.5 MeV-μs
Average radius	128.5m
Circumference	807.4m
Horizontal tune Q _h	8.7
Vertical tune Q _v	8.8
Synchotron tune Q _s	0.001

Deuteron Carbon hadronic cross-sections at 650 MeV kinetic energy (1.69 GeV/c momentum). Yannis will discuss asymmetry, etc. This is about the energy we would use for a deuteron edm experiment with a circumference of 0.8 km.

Total	$456 \pm 18 \text{ mb}$
Elastic	$131 \pm 15 \text{ mb}$
Inelastic	$346 \pm 9 \mathrm{mb}$

Radiation Length


	X_0 (g/cm ²)	
Carbon	42.7	
H_2	61.3	
D_2	122.4	

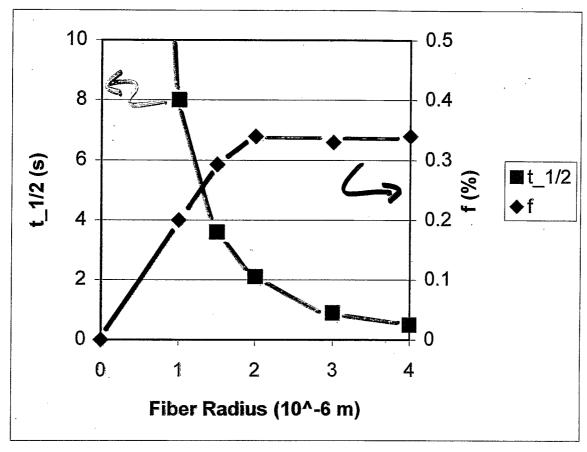
Deuteron p = 1.69 GeV/c.

β	0.67
γ	1.35
Cyclotron period	4.0 μs

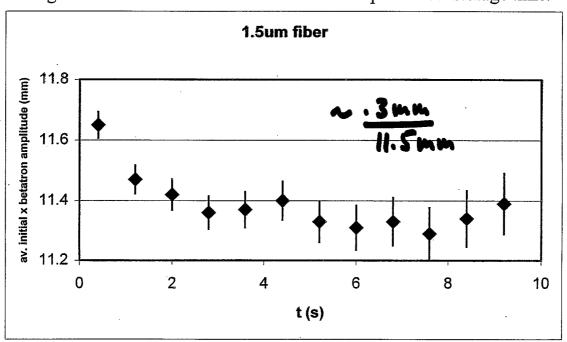
Sensitivity Estimates IUCF, BNL Booster or AGS?

Multi-turn strip injection:

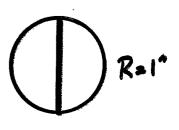
Comparison of Booster and CIS parameters.


•	BNL Booster	IUCF CIS
Circumference	202m	17.4m
Injection energy/nucleon	≈20 MeV	3.5 MeV
Polarized D per bunch	≈5 × 10 ¹⁰	5×10^8

Intensity limited by repeated passes of the D⁺ beam through the stripping foil. Favors large circumference and large injection energy.

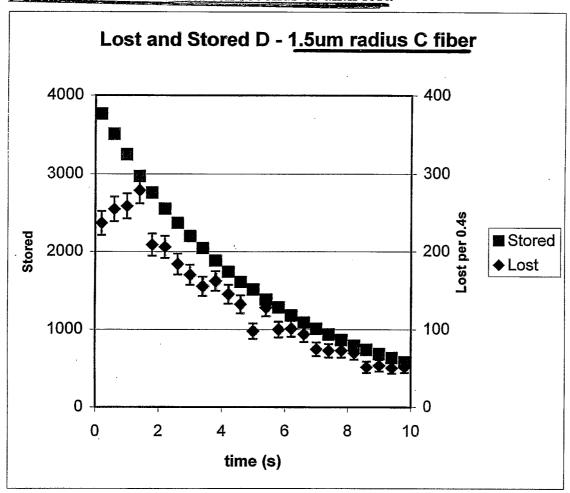

After multi-turn injection, bump is turned on so D^+ misses foil, R.F. is adiabatically turned on to bunch the beam, accelerate, etc.

Fraction of deuterons which interact hadronically over ten seconds and beam half-life vs. fiber radius.



Average initial horizontal betatron oscillation amplitude vs. storage time.

The initial 95% beam size is (normalized $\varepsilon = 15\pi$ mm-mrad):


$$x = \sqrt{\frac{\beta_x \varepsilon}{\pi \beta \gamma}} = \pm 18mm$$

Assumed only phase space x x' initial distribution. Circular collimator with R=1 inch.

Multiple Coulomb scattering does not de-polarize the beam: storage ring acceptance is only several mrad, cos(450mrad) = 0.9.

4000 deuterons tracked for ten seconds or until lost.

